ZILINSKA UNIVERZITA V ZILINE

Fakulta riadenia B R I\ I N . I T

a informatiky

Pl

PROJEKT

Multitenantné operacné centrum kybernetickej bezpe€nosti rieSené
ako otvorena cloudova sluzba s prvkami strojového ucenia

Previazané s balikom KPB6 — Publikaéné vystupy

URAD VLADY

Financované SLOVENSKE) REPUBLIKY

Eurépskou tniou PI-A’" IOBNOVY: @

NextGenerationEU

OpenStack — Architecture overview and comparison
of deployment options

Marek Moravcik
Faculty of Management Science
and Informatics
University of Zilina
Zilina, Slovakia
marek.moravcik @fri.uniza.sk

Martin Kontsek
Faculty of Management Science
and Informatics
University of Zilina
Zilina, Slovakia
martin.kontsek @fri.uniza.sk

Abstract—The paper deals with the OpenStack cloud platform
used in the Department of Information Networks.

OpenStack is an open-source solution for private, public, and
hybrid clouds, offering a lot of flexibility and scalability in
managing compute resources. The paper also describes the main
parts of the OpenStack platform architecture. It also focuses
on the analysis of various tools for automating the deployment
of OpenStack, such as OpenStack-Ansible, Kolla-Ansible, and
OpenStack Charms, which simplify its configuration process and
subsequent management in the software layer. Special attention
is given to the integration of MAAS and Juju tools, which enable
effective management of physical infrastructure.

The results of this work provide an overview of the possibilities
for implementing OpenStack in an academic environment and
emphasize the importance of automating these steps.

Index Terms—Cloud Computing, OpenStack, MAAS, Juju

I. INTRODUCTION

OpenStack is a popular platform for deploying of private
clouds.As an open-source cloud computing standard it sup-
ports variety of compute resources such as containers or virtual
machines. This makes OpenStack well-suited for academic
environments. At our faculty, OpenStack serves as the core
platform for managing and delivering cloud-based infrastruc-
ture. It provides the flexibility and scalability required to
meet the diverse needs of our projects and different research
initiatives.

The essence of OpenStack lies in its modular design. For its
run it needs only a few basic modules, while additional func-
tionality can be achieved by adding another components based
on the administrators needs. These components, often referred
to as services or modules, interact through well-defined APIs
to deliver specific functionalities, such as virtual machine
orchestration, network management, or storage provisioning.

Ivana Bridova
Faculty of Management Science
and Informatics
University of Zilina
Zilina, Slovakia
ivana.bridova@fri.uniza.sk

Pavel Segec
Faculty of Management Science
and Informatics
University of Zilina
Zilina, Slovakia
pavel.segec @fri.uniza.sk

OpenStack provides a vast numbers of modules, but only
three basic ones are needed to run this platform. Those
modules are Nova (compute), Neutron (networking), and
Ceilometer (monitoring and metering). These core modules
work together to provide essential cloud computing functions.
Additional modules in the departments’s OpenStack setup
include for example Cinder (block storage), Keystone (identity
service), Horizon (dashboard), and Heat (orchestration mod-
ule), among others. In the next chapter, we will provide a more
information about these modules.

II. OPENSTACK MODULES
A. Nova

Nova is the primary compute engine for OpenStack, re-
sponsible for managing virtual machines in the cloud. It
provides the essential components for creating, deploying, and
managing virtual instances. The Nova service is highly flexible
and can be deployed on various hardware platforms, enabling
broad compatibility with different virtualization technologies.
Within our department’s cloud environment, we primarily use
it for creating instances that simulate network topologies for
educational purposes.[1, 2]

The process of creating such an instance is relatively simple.
First, we need to select an image (representing a real operating
system), then create a network to which the instance will be
assigned. Next, we add a security group to protect it from
unauthorized manipulation, choose the appropriate resources
like RAM or memory, and finally, we can launch the instance.

B. Swift

Swift is a module used for storing and managing objects in
the cloud. These objects represent unstructured data, such as
documents, images, videos, or various backups. It is optimized

for working with large volumes of such data, while also
providing high scalability and replicating data across multiple
nodes in a cluster. This replication ensures fault tolerance.
The system is built on an API compatible with OpenStack,
making it easier to integrate with other modules, especially
for the needs of the Nova module.[3]

C. Glance

It is a module in OpenStack responsible for providing
virtual machine images. It is especially important for the Nova
module, as it is used when creating instances that utilize stored
images. The module supports various image formats, such as
VMDK and VDI, and can use different backends for storage,
including Swift or Ceph. In addition to managing the images
themselves, it also allows for storing metadata and categorizing
images, making searching for them easier.[4]

D. Keystone

Keystone is the identity service for OpenStack, providing
authentication and authorization. It is responsible for managing
user accounts and roles, ensuring that only authorized users
and services can access the cloud resources or projects.
Keystone supports different types of authentication, offering
specific control over permissions and resource access.[2]

E. Horizon

Horizon is a web-based graphical user interface (GUI) for
OpenStack platform. It uses a REST-based API front end to
enable easy communication with these services through a web
browser. For users, Horizon serves as a platform to manage
resources, including created topologies and components such
as instances, networks, and more.[5]

F. Neutron

Neutron serves as the networking component of Open-
Stack, providing flexibility and network management in a
cloud environment. It allows users to efficiently configure and
manage network elements through an API interface and a
set of agents responsible for managing the software-defined
networking (SDN) infrastructure. Neutron enables the creation
of various types of networks, which is very useful in an
academic environment, where students work on creating net-
work topologies and gain practical experience with them. This
OpenStack component allows for flexible customization of
network settings according to specific needs, which is essential
when building complex network architectures. Neutron also
provides an interface for integration with other OpenStack
services, such as Nova, Cinder, and others, enabling the
creation of fully integrated solutions within the cloud.[1]

G. Cinder

Cinder is the block storage service for OpenStack, offering
volumes to Nova virtual machines or containers through a
REST APIL It also allows users to manage snapshots and
backups, enabling them to easily restore data or create new
volumes from snapshots. With Cinder, users can scale storage
dynamically based on their needs or configure different storage

policies. All these actions can be easily performed via the
Horizon user interface.[6]

H. Heat

Heat is the module responsible for orchestration, which en-
ables their users to automate deployment of cloud applications
by defining their infrastructure needs as code. It implements
an orchestration engine responsible for creating applications
based on two different templates, Heat Orchestration Template
(HOT) or AWS CloudFormation (CFN). Those templates
describe the relationships between resources like instances,
networks with their volumes or security groups.[5]

Heat makes easy way how to setup even complex topologies
or applications without a lot of manual work. This module
also manages the whole lifecycle of the application e.g. when
you need to change it for some reasons, you just need
to simply modify the template and paste it in OpenStack.
Heat then on his own compare the new template with the
previous one and apply all founded changes. Even though
Heat primarily manages infrastructure it also integrates with
software configuration.[5]

1. Ceilometer

Ceilometer is the telemetry service within OpenStack. Its
main strength lies in capability to collect metering data from
various OpenStack services, such as Nova, Neutron or Cinder
and providing a unified view of resource consumption across
the cloud. The whole concept of Ceilometer is built on
collecting and processing data samples. All those samples
are being recorded on regular basis and together creating
stastistics. Those statistics then enabling administrators to
gain insights into resource usage and system performance.
Ceilometer allows us also to use samples as alarms. Those
alarms watch for a certain criterion to be met and then perform
specific action.[7, 1]

III. DEPLOYMENT OPTIONS

OpenStack, as a cloud computing platform, offers several
deployment models, each fullfilling different organizational
needs and operational strategies. The primary models include
the public cloud, private cloud, and hybrid cloud.

A. Public cloud

The public cloud model provides resources over the internet
in form of already existing Openstack deployment, that is
managed by the providing party. This is allowing organiza-
tions to scale flexibly without heavy investments in physical
infrastructure and administrators, which can be difficult to find
and train - as Openstack isn’t as widely spread as many of its
public cloud alternatives. While this is advantageous for many,
it may not suit organizations with strict compliance or security
requirements. [8]

B. Private cloud

Conversely, the private cloud model offers dedicated re-
sources and greater control, appealing to enterprises that
prioritize data security and customization. This option allows
organizations to tailor their environment according to specific
operational demands while maintaining full oversight of their
infrastructure. This is also the approach that was chosen on
the Department of Information Networks on Faculty of Man-
agement Science and Informatics, where such solution was
deployed - mainly because of the already available hardware
and many opportunities it opens for education of students and
future projects. However, it requires more upfront investment
and ongoing management, that can get difficult in terms of
man-hours required for such maintenance. [8, 9]

C. Hybrid cloud

The hybrid cloud model combines elements of both public
and private clouds, enabling organizations to balance work-
loads between on-premise facilities and off-site services. This
flexibility is particularly beneficial for oragnizations aiming to
optimize costs while managing fluctuating workloads or sen-
sitive data - though it should be dully noted that hybrid cloud
bring the extra complexity to an already wide set of systems
that form together such cloud infrastructure. As organizations
navigate these models, they must consider factors such as cost,
scalability, and compliance to determine which deployment
strategy aligns best with their goals and resources. [8, 9]

IV. OVERVIEW AND COMPARISON OF MOST PROMINENT
DEPLOYMENT TOOLS AND FRAMEWORKS

After deciding on the type of deployment, there comes an
entirely different problem - choosing the right deployment
tool, as the on-premise deployment of OpenStack can be
greatly facilitated by various tools and frameworks, each
offering unique advantages and disadvantages:

« openstack-ansible
« kolla-ansible
o openstack-charms

For instance, tools like Ansible automate the installation
and configuration processes, allowing for quicker deployment
and consistency across environments. This tool is used as
such in ‘openstack-ansible‘ and ‘kolla-ansible® projects, each
aiming to install and manage Openstack in various ways -
These automation tools reduce human error and streamline
the management of numerous servers, which is crucial in
complex cloud infrastructures. However, they require a certain
level of expertise to set up and maintain, posing a chal-
lenge for organizations without dedicated resources. While
both openstack-ansible and kolla-ansible leverage Ansible for
deployment and management of Openstack, the main distiction
between the two is their approach to underlying runtime
environment for Openstack components - openstack-ansible
is leveraging power of Linux Containers (LXC). In contrast,
kolla-ansible uses Docker containers, emphasizing much more

popular approach, making it simpler for a lot of admins already
familiar with the technology. [10, 11, 12, 13]

Entirely another deployment stack/tool worth mentioning is
OpenStack Charms, which leverages multiple tools managed
by Canonical Ltd. - those mainly being Juju and MAAS
(Metal as a Service). These tools work together to simplify
management of servers (including installation of operating
system) and deployment of applications onto them in the form
of packages, entirely getting rid of most of the manual and
tedious processes. In comparison to Ansible equipped tools
like openstack-ansible and kolla-ansible, OpenStack Charms
follow more model-driven approach, where everything is ab-
stracted behind high-level objects - making the entire system
more approachable even to less experienced admins. On the
other hand, system like this can and has its apparent caveats -
while the tools offer a vast amount of configuration options, it
can’t provide such granular control as Ansible equipped tools
do - making it more difficult to customize Openstack Charms
in edge case scenarios. [12, 14]

V. MAAS

MAAS (Metal as a Service) is a tool developed by Canon-
ical Ltd. for managing the physical infrastructure of an on-
premise OpenStack deployment. It allows administrators to
manage a large fleet of physical servers as if they were
virtual machines. The central function of MAAS in OpenStack
deployment at our department is to handle the provisioning of
bare-metal machines by turning them into a pool of available
resources. It achieves this by automating processes such as
power management, PXE booting, operating system installa-
tion, and network configuration - all this is achieved through
machine-specific out-of-band management interface based on
IPMI (Intelligent Platform Management Interface). Through its
intuitive web interface, MAAS enables administrators to add,
commission, and deploy machines seamlessly. Commissioning
a machine also involves testing its hardware (such as CPU,
RAM, and disk) and verifying network connectivity before it
becomes available for deployment. In the context of Open-
Stack, MAAS makes the initialization of the hardware layer
setup easier, freeing administrators from manually commis-
sioning all the hardware manually. [15, 16]

To describe how the usual workflow looks like, the initial-
ization and commissioning process in MAAS begins when a
physical machine is added to the system. When commissioning
the machine, the machine is powered on through IPMI, in-
structed to boot from PXE (Preboot Execution Environment),
where it loads the provided (in this case Ubuntu) Linux
distribution into its RAM. MAAS then uses this ephemeral
operating system to scan the machine and determine its hard-
ware: i.e. CPUs, RAM, storage drives, PCI and USB devices,
and so forth. As next, MAAS carries out some basic test, just
to make sure that all the hardware works just as expected. [16]

Once the hardware is validated, MAAS marks the machine
as ready for deployment and user is allowed to configure the
desired machine status - basic configuration, mainly involving
networking setup. After that, user can initiate the deployment

itself, where the destination system will be loaded and installed
with the desired operating system, network configuration and
other such configuration user provided. [16]

Web interface & REST API

Fig. 1. MAAS Architecture [17]

VI. Juiu

Juju is a tool that works with MAAS to manage the lifecycle
of OpenStack components. It is a service orchestration and
management tool that automates the deployment, scaling,
and operation of software services, which we utilize in our
OpenStack on-premise deployment. The main concept of Juju
is to package different application deployments into ’charms,”
which are reusable bundles of application files accompanied
with scripts for installation, upgrades and other such tasks,
overall encapsulating best practices for deploying and manag-
ing specific software application. In the case of OpenStack,
Juju provides charms for each of the major components —
such as Nova for compute, Neutron for networking, Cinder
for block storage, or Keystone for identity management. When
combined with MAAS, Juju allows these services to be de-
ployed across a collection of bare-metal machines - which Juju
controls through MAAS itself - completely automatically. This
automation reduces the complexity of deploying OpenStack,

which usually involves a more complex installation process.
[18, 19]

| © kubernetes

0w oW

kubernetes

@ kubernetes | | T2 openstack.

aws ‘ """""""""

‘ ‘ A Vicrosoft Azure

Fig. 2. Juju Architecture [17]

Juju also offers the ability to create and manage rela-
tionships between these OpenStack components dynamically.
For example, when deploying an OpenStack cloud, Juju can
link Nova (compute) to Neutron (networking), ensuring that
these services are correctly configured to communicate with
each other - all this is accomplished through integrated logic
in the Juju controller. That means, when you link charms
together, Juju ensures that the required endpoints, credentials
and similar settings are exchanged and applied correctly on
both sides. [19]

This modular approach juju is utilizing also supports hori-
zontal scaling - as demand increases and currently deployed
services are over-saturated, additional compute or storage
nodes can be provisioned with MAAS, and Juju will automati-
cally deploy and configure the necessary services on these new
nodes. This design also enables Juju to simplify upgrade and
maintenance processes. It simplifies the upgrade by allowing
services to be upgraded without significant downtime, main-
taining high availability. Juju also provides monitoring and
logging for all the deployed services, allowing administrators
to track application status and health in real time from a single
place with just one utility. [20] To provide an useful example,
Juju’s status output for deployed services also allowed us
to write our own alerting service to send notification to our
administrators in case of any application failure thanks to the
Juju’s ability to parse all the status output in JSON format,
which allows its users to parse any required information.

zzzzzzzzzz

® »0-0-0-40

0OODD6 <090 ¢
] N

137

[}~ N

678 Application Ready

Fig. 3. Juju Dashboard [17]

By combining Juju and MAAS, organizations can create
a fully automated and scalable infrastructure for deploying
OpenStack on bare-metal hardware. This combination pro-
vides the benefits of public clouds on your own hardware,
giving businesses and institutions full control over their infras-
tructure while maintaining the flexibility to scale and evolve
their environments over time.

VII. CONCLUSION

In this paper, we presented OpenStack used in the De-
partment of Informatics Netowrk at our faculty, where we
focused on describing the architecture and deployed modules
that enable flexible and scalable cloud service deployment.
We also compared various deployment models, such as public,
private, and hybrid clouds, highlighting the variety of options
OpenStack offers depending on the specific needs of an
institution. Furthermore, we focused on the most suitable
tools and frameworks for automating OpenStack deployment.
We introduced tools like OpenStack-ansible, Kolla-ansible,
and OpenStack Charms, which simplify and speed up the
installation and management of complex cloud environments.
In addition to managing the software aspect of the cloud, we
also addressed the management of its physical part, where we
discussed tools like MAAS and Juju, which play a key role in
managing our servers.

From an academic perspective, OpenStack is a valuable tool
that allows students to work with real cloud technologies and
create various topologies using Nova instances, where they can
gain further practical experience in configuring and managing
them.

ACKNOWLEDGMENT
REFERENCES

[1] Dan Radez. Openstack essentials. Packt Publishing Ltd,
2015.

[2] Huawei Technologies Co., Ltd. “OpenStack”. In: Cloud
Computing Technology. Springer, 2022, pp. 123-145.
ISBN: 978-981-19-3026-3. URL: https://link.springer.
com/chapter/10.1007/978-981-19-3026-3_6.

[3] Joe Arnold. Openstack swift: Using, administering, and
developing for swift object storage. ” O’Reilly Media,

Inc.”, 2014.
[4] Ken Pepple. Deploying openstack. ” O’Reilly Media,
Inc.”, 2011.

[5] Ashish Lingayat et al. “Horizon, a web-based user
interface for managing services in openstack: an in-
trospection”. In: 2018 9th International Conference on
Computing, Communication and Networking Technolo-
gies (ICCCNT). IEEE. 2018, pp. 1-6.

[6] OpenStack Community. OpenStack Block Storage
(Cinder) Documentation. Last updated: 2021-09-24
17:25:46. OpenStack Foundation, 2021. URL: https://
docs.openstack.org/cinder/latest/.

(7]

(8]

Dongmyoung Baek and Bumchul Lee. “Analysis of
telemetering service in OpenStack™. In: 2015 Interna-
tional Conference on Information and Communication
Technology Convergence (ICTC). IEEE. 2015, pp. 272—
274.

Sumit Goyal. “Public vs private vs hybrid vs
community-cloud computing: a critical review”. In:
International Journal of Computer Network and Infor-
mation Security 6.3 (2014), pp. 20-29.

Mitesh Soni. “Is the private cloud a real cloud?” In:
Linux Journal 2014.243 (2014), p. 4.

Maciej Siczek) Openlnfra Foundation (Maciej Kucia.
Deploying OpenStack - what options do we have?
Youtube. 2019. URL: https://youtu.be/8ODdvCogwlI8?
t=473 (visited on 01/11/2025).

About OpenStack-Ansible - Openstack. Version 2024.2.
URL: https://docs.openstack.org/project-deploy- guide/
openstack - ansible/2024.2/app- aboutosa.html (visited
on 01/11/2025).

Sai Vivek Gudipati and Vishwa Mithra Tatta. Investiga-
tion of an automatic deployment transformation method
for OpenStack. 2022.

Omar Khedher and Chandan Dutta Chowdhury. Mas-
tering OpenStack. Packt Publishing Ltd, 2017.

Anshu Awasthi and P Ravi Gupta. “Comparison of
openstack installers”. In: International Journal of Inno-
vative Science, Engineering & Technology 2.9 (2015).
About MAAS - Canonical. URL: https://maas.io/docs/
about-maas (visited on 01/11/2025).

How it works, MAAS - Canonical. URL: https://maas.
io/how-it-works (visited on 01/11/2025).

StarlingX*: a fully-featured cloud for the distributed
edge — 0l.org. URL: https://01.org/blogs/forrest/2019/
starlingx-fully-featured-cloud-distributed-edge.

What is a charm? (Juju) - Canonical. URL: https://juju.
is/charms-architecture (visited on 01/11/2025).

Dilma Morais and Jodao Paulo Sousa. “Orchestration
of Cloud-Based Services and Infrastructure: An Ex-
ploratory Analysis of Juju, Kubernetes, and Terraform”.
In: 37th International Business Information Manage-
ment Association (IBIMA) (2021), pp. 1-8.

Relation (integration) (Juju) - Canonical. URL: https:
/fjuju.is/docs/juju/relation (visited on 01/11/2025).

