ZILINSKA UNIVERZITA V ZILINE

Fakulta riadenia B R I\ I N . I T

a informatiky

Pl

PROJEKT

Multitenantné operacné centrum kybernetickej bezpe€nosti rieSené
ako otvorena cloudova sluzba s prvkami strojového ucenia

Previazané s balikom KPB6 — Publikaéné vystupy

URAD VLADY

Financované SLOVENSKE) REPUBLIKY

Eurépskou tniou PI-A’" IOBNOVY: @

NextGenerationEU




VoIP as a Service: Asterisk in OpenStack platform

Martin Kontsek*, Pavel Segec, Marek Moravcik, Ivana Bridova
Faculty of Management Science and Informatics, University of Zilina, Univerzitna 8215/1, 010 26 Zilina
*e-mail: martin.kontsek @fri.uniza.sk

Abstract—This article explores the integration of Asterisk as a
VoIP service within the OpenStack cloud platform. It highlights
the advantages of cloud services, particularly for end users
and IT departments. The implementation process of Asterisk,
including installation, configuration, and the development of
automation scripts, is detailed. The significance of Network
Address Translation (NAT) functionality is emphasized, along
with the development of user-friendly configuration scripts.
Lastly, the article discusses challenges encountered with the
ManagelQ integration, suggesting potential improvements for
future deployments.

Index Terms—Cloud Computing, OpenStack, Asterisk, VoIP,
ManagelQ

I. INTRODUCTION

The trend toward the utilization of cloud services is cur-
rently gaining momentum. This phenomenon is driven by var-
ious factors, including technological advancements as well as
economic and organizational aspects. For end users, leveraging
cloud services presents a straightforward and efficient means
of accessing diverse applications and data storage without the
need to invest in personal infrastructure. Financially, it often
proves to be more advantageous, as companies can avoid the
high costs associated with purchasing expensive servers and
hardware, opting instead to use available cloud platforms for
a monthly fee.

For administrators and IT departments, utilizing cloud ser-
vices is equally beneficial. Managing the devices on which
these services operate becomes simpler, as physical mainte-
nance and server updates are no longer a concern. Cloud
platforms often provide tools for monitoring and managing
services, enhancing efficiency and offering better insights into
who utilizes the service, when, and to what extent.

In the context of our specific task—implementing Aster-
isk as a cloud service for the staff of the Department of
Information Networks—it is essential to consider multiple
aspects. These include security, scalability, availability, and
performance. The implementation of Asterisk in the cloud
should be well thought out, taking into account user needs as
well as the technical requirements of the system. It is crucial
to ensure that communication through Asterisk is reliable and
secure while also being sufficiently flexible to adapt to the
changing needs of users. The selection of an appropriate cloud
platform and the configuration of Asterisk are key steps in this
implementation.

II. ASTERISK

Asterisk is an open-source software framework designed for
building multi-protocol communication applications in a real
time, primarily focused on voice over IP (VoIP) services. Ini-
tially developed by Mark Spencer in 1999 and now maintained
by Sangoma Technologies, Asterisk has evolved into one of
the most versatile and widely adopted platforms for creating
telephony applications. It is used globally to support a range
of services, including private branch exchange (PBX) systems,
VoIP gateways, and conference servers. Asterisk’s open-source
nature provides users with the flexibility to develop tailored
communication solutions, whether for small business environ-
ments or large-scale telephony infrastructures. As a robust
and cost-effective alternative to proprietary telecommunication
systems, Asterisk has gained widespread use in both enterprise
and service provider markets. Asterisk is used by various states
all around the world.

One of the primary strengths of Asterisk lies in its adaptabil-
ity, as it supports a wide array of communication protocols, in-
cluding the Session Initiation Protocol (SIP), H.323, and other
legacy telephony systems. This flexibility allows seamless inte-
gration with both traditional and IP-based telephony networks,
providing businesses with the opportunity to modernize their
communication infrastructure without fully abandoning older
technologies.

A. Key features

Asterisk provides a comprehensive set of features that to
meet both basic and advanced communication needs. At its
core, Asterisk functions as a fully-featured PBX (Private
Branch Exchange) system, offering essential call management
features such as call routing, voicemail, call transfer, and
call waiting. These capabilities allow businesses to effectively
manage internal and external communication, optimizing their
workflow through automation and streamlined call handling
processes. Additionally, Asterisk’s PBX functionality can be
enhanced by integrating it with Interactive Voice Response
(IVR) systems, which enable the automation of incoming call
handling through voice menus.

One of Asterisk’s defining features is its role as a VoIP
gateway, bridging traditional telephony systems with mod-
ern VoIP networks. By supporting multiple communication
protocols, Asterisk allows organizations to transition from
analog and digital telephony systems to VoIP, enabling them
to leverage the cost efficiency and scalability of internet-based
communications. The inclusion of industry-standard protocols



such as SIP and H.323 ensures compatibility with a wide
range of VoIP services and devices, while also allowing the
integration of legacy systems via MGCP and SCCP.

Asterisk’s dialplan configuration system further enhances
its flexibility by allowing users to define custom call handling
logic. The dialplan is highly configurable and can be scripted
to manage call routing based on user-defined rules, which can
be as simple or complex as required [1, 2].

B. Architecture

Asterisk’s architecture is composed of a core system that
manages key functionalities, such as reading configuration
files and building the dialplan, which controls how calls are
handled. The core interacts with modules, which add various
capabilities, including channel drivers (e.g., SIP), voicemail,
and conferencing features. These modules are dynamically
loaded, allowing for customization and scalability. Channels
facilitate communication between devices, and calls are man-
aged by connecting these channels. Asterisk’s architecture is
modular, enabling integration with other telephony systems
and extensive customization [3].

cIEaracs

PBX
CORE
»

DIALRI

Command
Line Interface

Manager
Interface

Applications Resources

Audio &
Video
Codecs

File
Format
Drivers

System

CDR

Drivers eontia:

Drivers

Fig. 1. Asterisk Architecture [4]

C. Difference between chan_sip and pjsip

In Asterisk, the chan_sip and PJSIP modules serve as
SIP channel drivers, but they differ significantly in terms of
architecture, performance, and features. chan_sip, the older
and now deprecated module, was widely used for basic SIP
functionality, but it faced limitations in terms of scalability,
security, and complex configuration management. PJSIP, by
contrast, is a modern, highly scalable SIP stack that offers
enhanced performance, modularity, and better support for
advanced features like NAT traversal, TLS, and SRTP. Unlike
chan_sip, PJSIP also supports asynchronous operations, which
improve system efficiency and responsiveness under high call

volumes. Additionally, PJSIP’s configuration is more flexible
and allows for better integration with external systems, making
it the preferred choice for contemporary Asterisk deployments.
Due to its ongoing support and richer feature set, PJSIP is
generally recommended for new Asterisk installations over
chan_sip, which has been deprecated [5].

III. OPENSTACK

OpenStack is an open-source cloud computing platform
designed to enable the development and management of
public and private clouds. Initially developed by NASA and
Rackspace, OpenStack is now maintained by the OpenStack
Foundation. It provides a set of interrelated services that
manage computing, storage, and networking resources through
a web-based dashboard, command-line tools, and RESTful
APIs. OpenStack is designed to be highly scalable, allowing
businesses to build large, multi-tenant cloud infrastructures.

A. Key features

One of OpenStack’s primary features is its modular archi-
tecture, which is composed of various services that can be
integrated based on an organization’s needs. These services
include Nova, which provides compute resources by managing
virtual machines (VMs), and Neutron, responsible for man-
aging networking, enabling complex network configurations
such as software-defined networking (SDN). Another core
service is Cinder, which handles block storage, enabling the
creation and management of persistent storage volumes for
instances. For object storage, OpenStack offers Swift, which
provides scalable storage ideal for archiving and large-scale
data storage.

OpenStack also emphasizes multi-tenancy, allowing dif-
ferent users or departments within an organization to share
a cloud environment while maintaining isolated resources.
This capability makes it ideal for both private and public
clouds, where resource allocation and security are paramount.
Furthermore, OpenStack is highly scalable and can be de-
ployed across hundreds or even thousands of servers, making
it suitable for large-scale enterprise environments. Its open-
source nature and large community of contributors ensure that
it stays at the forefront of cloud innovations while offering a
cost-effective solution compared to proprietary cloud services.
OpenStack’s flexibility, wide-ranging support for virtualization
technologies, and active community contribute to its growing
adoption in both enterprise and service provider environments

[6].
IV. INTEGRATION OF ASTERISK TO OPENSTACK

A. Installation and configuration of Asterisk

The initial phase of our project involved the manual instal-
lation of Asterisk on a Debian instance within the OpenStack
environment. We began by deploying a new instance featuring
the latest version of Debian. Our intention was to install
Asterisk directly from the default package repositories. How-
ever, we encountered an obstacle, as the version of Asterisk
available was outdated and not aligned with our requirements.



To address this issue, we needed to configure the system to
include access to older repositories by adding the necessary
entries to the sources list.

setcsaptssources. list.d-debian.sources

Fig. 2. Debian sources list

Upon successfully installing Asterisk, we developed a basic
configuration that enabled calls to a specific number, ac-
companied by an audio playback feature. This initial setup
facilitated our understanding of Asterisk’s capabilities. We
then enhanced the configuration to allow for calling between
various users registered within the Asterisk exchange. These
configurations served as valuable exercises for reinforcing our
knowledge of Asterisk’s functionalities. However, recognizing
the importance of utilizing updated technology, we decided
to upgrade Asterisk to a newer version to incorporate the
res_pjsip module, which is a modern alternative to the depre-
cated chan_sip module.

To facilitate this transition, we terminated the existing
Debian instance and launched a new one, following the
installation guidelines specified in the Asterisk documentation
[7]. Once the installation was complete, we created a con-
figuration nearly identical to our previous setup, ensuring it
was compatible with the res_pjsip module. Given the lengthy
nature of the testing phase, we opted to develop a script
that could be embedded in the instance’s metadata during
its creation. This script would automate the installation of all
prerequisites for Asterisk, streamline the installation process
itself, and establish a fundamental test configuration.

B. NAT Functionality

The subsequent step in our project involved the integration
and testing of Network Address Translation (NAT) function-
ality, which is critical for VoIP applications operating within
private networks. To implement this, we utilized the Floating
IP feature provided by OpenStack. We initiated the creation
of a new private network, which enabled the addition of new
instances while ensuring connectivity to the public internet
via a router. By assigning the Floating IP to the external
interface of the router, we ensured that our VoIP exchange
became accessible from the public network, thus facilitating
communication with external devices beyond the confines of
the private network.

C. Script for creating configuration

In our efforts to streamline the configuration process, we
aimed to provide users with an accessible method for config-

192.168.0.0/24

15 0/24Q@
ext-net-154

Fig. 3. OpenStack network with FloatingIP router

uring the exchange without requiring in-depth knowledge of
Asterisk module configuration files. To this end, we developed
a user-friendly script designed to generate a basic configura-
tion and assist users in creating account configurations for the
exchange. The script requires minimal user input, specifically
the names and passwords for the accounts to be created.
Users can specify one or multiple accounts during the initial
setup, and the script also allows for the generation of new
configurations or the addition of additional accounts as needed.

Finally, we sought to further automate the entire process
through ManagelQ, enabling users to deploy new instances
with a single click. However, this endeavor proved impractical,
as the implementation of ManagelQ in our OpenStack envi-
ronment did not incorporate all the desired features, limiting
the automation capabilities we had envisioned.

V. CONCLUSION

In this article, we presented an overview of Asterisk and
OpenStack, highlighting their key features and architectures.
We discussed our efforts to implement Asterisk as a VoIP
solution offered as a service. Initially, we attempted to create a
modified Debian image with a preinstalled version of Asterisk
but encountered issues, including problems with unauthorized
packages and installation errors related to library dependen-
cies. Consequently, we opted for a simpler approach, utilizing
a clean Debian image and automation scripts for installation
and configuration.

The script we developed checks prerequisites and generates
a basic configuration for Asterisk. Users can easily add one or
more accounts by inputting the relevant names and passwords,
and this script can be executed at any time.

Finally, we aimed to enhance the process further by in-
tegrating ManagelQ for automated instance deployment. Un-
fortunately, due to improper installation within our OpenStack
environment, we could not deploy or test ManagelQ. However,
we believe that, once correctly installed, it should function as
intended.

REFERENCES

[1] Getting Started with Asterisk. URL: https://www.asterisk.
org/get-started/.



Home - This is the home of the official documentation
for The Asterisk Project. URL: https://docs.asterisk.org/.
Asterisk Architecture. URL: https : / / docs . asterisk .
org / Fundamentals / Asterisk - Architecture / Asterisk -
Architecture- The-Big-Picture/.

Asterisk docs - a big picture of Asterisk Architecture.
URL: https://docs.asterisk.org/Fundamentals/Asterisk -
Architecture/bigpicture.png.

Asterisk docs - Migrating from changiptores,jsip. URL:
https://docs.asterisk.org/Configuration/Channel- Drivers/
SIP/Configuring-res_pjsip/Migrating-from-chan_sip-to-
res_pjsip/.

What is Openstack. URL: https://www.openstack.org/
software/.

Installing Asterisk From Source. URL: https://docs .
asterisk . org / Getting - Started / Installing - Asterisk /
Installing- Asterisk-From-Source/What-to-Download/.



